

Welcome to mathics-scanner’s documentation!

This is the tokeniser or scanner portion for the Wolfram Language.

As such, it also contains a full set of translation between Wolfram Language
named characters, their Unicode/ASCII equivalents and code-points.

Contents:

	Using mathics-scanner

	API
	Tokenization

	Feeders

	Character Conversions

	Implementation
	The Tokeniser

	Character Conversions

Indices and tables

	Index

	Module Index

	Search Page

Using mathics-scanner

This is used as the scanner inside Mathics [https://mathics.org] but it can
also be used for tokenizing and formatting Wolfram Language code. In fact we
intend to write one. This library is also quite usefull if you need to work
with Wolfram Language named character and convert them to various formats.

	For tokenizing and scanning Wolfram Language code, use the
mathics_scanner.Tokenizer class.

	To convert between Wolfram Language named characters and Unicode/ASCII, use
the mathics_scanner.characters.replace_wl_with_plain_text and
mathics_scanner.characters.replace_unicode_with_wl functions.

	To convert between qualified names of named characters (such FormalA for
\[FormalA]) and Wolfram’s internal representation use the
m̀athics_scanner.characters.named_characters dictionary.

API

Tokenization

Tokenization is performed by the Tokeniser class. The next method
consumes characters from a feeder and returns a token if the tokenization
succeeds. If the tokenization fails an instance of TranslateError is
raised.

The tokens returned by next are instances of the Token class:

Feeders

A feeder is an intermediate between the tokeniser and the actual file being scanned. Feeders used by the tokeniser are instances of the LineFeeder class:

Specialized Feeders

To read multiple lines of code at a time use the MultiLineFeeder class:

To read a single line of code at a time use the SingleLineFeeder class:

To read lines of code from a file use the FileLineFeeder class:

Character Conversions

The mathics_scanner.characters module also exposes special dictionaries:

	named_characters
	Maps fully qualified names of named characters to their corresponding
code-points in Wolfram’s internal representation:

for named_char, code in named_characters.items():
 print(f"The named character {named_char} maps to U+{ord(code):X}")

	aliased_characters
	Maps the ESC sequence alias of all aliased characters to their corresponding
code points in Wolfram’s internal representation.

mathics_scanner.generate.rl_inputrc

Implementation

The Tokeniser

Tokenization is performed by the Tokeniser class. The most important
method in this class is by far the next method. This method consumes
characters from the feeder and returns a token (if the tokenization succeeds).

Tokenization Rules

Tokenization rules can are defined by declaring methods (in the Tokeniser
class) whose names are preceded by t_, such as in the following example:

def t_SomeRule(self, match):
 # Some logic goes here...
 pass

A tokenization rule is supposed to take a regular expression match (the
match parameter of type re.Match) and convert it to an appropriate
token, which is then returned by the method. The rule is also responsible for
updating the internal state of the tokeniser, such as incrementing the pos
counter.

A rule is always expected to receive sane input. In other words, deciding which
rule to call is a responsibility of the caller. Rules are are also
automatically called from inside of next.

Messaging Functionality

Warnings and errors encountered during scanning and tokenization are collected
in a message queue and stored in the feeders using the message and
syntax_message methods of LineFeeder. The message queue is therefore a
property of the feeder. The Tokeniser class also has a method to append
messages to the message queue of it’s feeder, the syntax_message method.

The messages are stored using Mathics’ internal format, but this is going to be
revised in the next release (in fact, we plan to replace messages by errors
entirely).

Character Conversions

The mathics_scanner.characters module consists mostly of translation tables
between Wolfram’s internal representation and Unicode/ASCII. For
maintainability, it was decided to store this data in a human-readable YAML
table (in data/named-characters.yml).

The YAML table mainly contains information about how to convert a
named character to Unicode and back. If a given character has a direct Unicode
equivalent (a Unicode character whose description is similar as the named
character’s), this is specified by the unicode-equivalent field in the YAML
table. Note that multiple named characters may share a common
unicode-equivalent field. Also, if a named character has a Unicode
equivalent, it’s unicode-equivalent field need not to consist of a single
Unicode code-point. For example, the Unicode equivalent of \[FormalAlpha]
is U+03B1 U+0323 (or GREEK SMALL LETTER ALPHA + COMBINING DOT BELOW).

If a named character has a unicode-equivalent field whose description fits
the precise description of the character then it’s has-unicode-inverse
field in the YAML table is set to true.

The conversion routines replace_wl_with_plain_text and
replace_unicode_with_wl use this information to convert between Wolfram’s
internal format and standard Unicode, but it should be noted that the
conversion scheme is more complex than a simple lookup in the YAML table.

The Conversion Scheme

The replace_wl_with_plain_text functions converts text from Wolfram’s
internal representation to standard Unicode or ASCII. If set to True, the
use_unicode argument indicates to replace_wl_with_plain_text that the
input should be converted to standard Unicode. If set to False,
use_unicode indicates to replace_wl_with_plain_text that it should only
output standard ASCII.

The algorithm for converting from Wolfram’s internal representation to standard
Unicode is the following:

	If a character has a direct Unicode equivalent then the character is replaced
by it’s Unicode equivalent.

	If a character doesn’t have a Unicode equivalent then the character is
replaced by it’s fully qualified name. For example, the \[AliasIndicator]
character (or U+F768 in Wolfram’s internal representation) is replaced by
the Python string "\\[AliasIndicator]".

The algorithm for converting from Wolfram’s internal representation to standard
ASCII is the following:

	If a character has a direct Unicode equivalent and all of the characters of
it’s Unicode equivalent are valid ASCII characters then the character is
replaced by it’s Unicode equivalent.

	If a character doesn’t have a Unicode equivalent or any of the characters of
it’s Unicode equivalent isn’t a valid character then the character is
replaced by it’s fully qualified name.

The replace_unicode_with_wl function converts text from standard Unicode to
Wolfram’s internal representation. The algorithm for converting from standard
Unicode to Wolfram’s internal representation is the following:

	If a Unicode character sequence happens to match the unicode-equivalent
of a Wolfram Language named character whose has-unicode-inverse field is
set to true, then the Unicode character is replaced by the Wolfram’s internal
representation of such named character. Note that the YAML table is
maintained in such a way that there is always at most one character that
fits such description.

	Otherwise the character is left unchanged. Note that fully qualified names
(such as the Python string "\\[Alpha]" or the Python string "Alpha") are not replaced at all.

Optimizations

Because of the large size of the YAML table and the relative complexity of the
conversion scheme, it was decided to store precompiled conversion tables in a
file and read them from disk at runtime (when the module is imported). Our
tests showed that storing the tables as JSON and using ujson [https://github.com/ultrajson/ultrajson] to read them is the most efficient
way to access them. However, this is merely an implementation detail and
consumers of this library should not rely on this assumption.

The conversion tables are stored in the data/characters.json file, along
side other complementary information used internally by the library.
data/characters.json holds three conversion tables:

	The wl-to-unicode table, which stores the precompiled results of the
Wolfram-to-Unicode conversion algorithm. wl-to-unicode is used for lookup
when replace_wl_with_plain_text is called with the use_unicode
argument set to True.

	The wl-to-ascii table, which stores the precompiled results of the
Wolfram-to-ASCII conversion algorithm. wl-to-ascii is used for lookup
when replace_wl_with_plain_text is called with the use_unicode
argument set to False.

	The unicode-to-wl table, which stores the precompiled results of the
Unicode-to-Wolfram conversion algorithm. unicode-to-wl is used for lookup
when replace_unicode_with_wl is called.

The precompiled translation tables, as well as the rest of data stored in
data/characters.json, is generated from the YAML table with the
mathics_scanner.generate.build_tables.compile_tables function.

Note that multiple entries in the YAML table are redundant in the following
sense: when a character has a Unicode equivalent equivalent but the Unicode
equivalent is the same as it’s Wolfram’s internal representation (i.e. the
wl-unicode field is the same as the unicode-equivalent field in the
YAML table) then it is considered redundant for us, since no conversion is
needed.

As an optimization, we explicitly remove any redundant characters from all
precompiled conversion tables. Such optimization makes the tables smaller and
easier to load. This implies that not all named characters that have a Unicode
equivalent are included in the precompiled translation tables (the ones that
are not included are the ones where no conversion is needed).

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to mathics-scanner’s documentation!

 		
 Using mathics-scanner

 		
 API

 		
 Tokenization

 		
 Feeders

 		
 Specialized Feeders

 		
 Character Conversions

 		
 mathics_scanner.generate.rl_inputrc

 		
 Implementation

 		
 The Tokeniser

 		
 Tokenization Rules

 		
 Messaging Functionality

 		
 Character Conversions

 		
 The Conversion Scheme

 		
 Optimizations

_static/file.png

_static/minus.png

_static/plus.png

